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I. Introduction

Solar wind ion implantation has been shown to be an important source

of both high rare 'gas contents (see, for example, Eberhardt et al. 1970)

and extreme radiation damage (Borg et al. 1971) within one micron of the

surfaces of lunar soil grains. Significant surface-correlated enrichments

of H, C, and N in lunar soils, due to solar wind implantation, have also

been proposed (see, for example, Wszolek et al. 1974). Also, chemical and

physical alterations of grain surfaces can be caused by solar wind related

processes, including atmospheric reimplantationiand ion sputtering, as well

as unrelated mechanisms such as diffusive loss at lunar daytime temperatures,

impact volatilization, condensation of impact-generated volatiles, and pos-

sibly, reaction with volcanic emanations.

In our continuing study, we have used a nuclear technique to investi-

gate the effects of this complex environment on the depth distribution of

hydrogen and fluorine in the outer micron of 2-5 mm lunar soil fragments

and in chips from lunar rocks. Observed surface concentrations of hydrogen

can be interpreted in terms of an expected solar wind source; however, the

solar wind is not likely to be responsible for appreciable surface concentra-

tions of fluorine. Consequently, measurements of the fluorine distributions

in the outer micron of lunar sample surfaces may yield information concerning

other processes such as the mobilizations of volatiles on the moon or reac-

tion of the sample surfaces with fluorine-bearing volcanic emanations

(Turkevich 1973).

II. Experimental Technique

The basic technique has been described in detail elsewhere (Leich and
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Tombrello 1973), but a few points bear repeating. Both hydrogen and fluorine

measurements are performed using the narrow (5 keV wide) resonance at 0.83 MeV

center-of-mass energy in the nuclear reaction 19F(p,O/)160. A proton beam

is directed onto the lunar sample for analysis of the fluorine distribution.

Due to the sharp resonant nature of this reaction, the gamma-ray counting

rate is proportional to the fluorine content at a particular depth determined

by the choice of the incident proton energy. Higher energy protons penetrate

deeper before being slowed down to the resonant energy. An analogous situa-

tion holds for measurement of the hydrogen distributions, in which a 19F

beam is used to induce the reaction on the hydrogen contained in the lunar

sample. In either case, the gamma-ray counting rate is measured at a number

of incident beam energies in the vicinity of the resonance, and these data

are converted directly into a depth profile using proportionalities between

beam energy and depth and between counting rate and concentration of hydrogen

or fluorine. Measurements have been performed over the depth range for

which this simple picture is valid; 0-0.5 Lm for hydrogen, with a depth

resolution of - 0.02 am, and 0-1.0 [m for fluorine, with a resolution of

~ 0.05 Im.

A new scattering chamber has been used for some of the measurements

reported in this paper, enabling the following improvements over the previous

configuration described by Leich and Tombrello (1973).

A) The base pressure of the scattering chamber has been lowered from

-9 < -10~ 1 X 10 torr to x 1 X 10 torr.

B) The gamma-ray detection efficiency has been increased from - 0.02

to - 0.06.

C) Precise visual positioning of the beam on the target surface is now

possible. Many samples fluoresce under bombardment, making the

positioning quite accurate.
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The following points should also be emphasized:

1) Both all metal scattering chambers have been vacuum baked and are

pumped by clean, getter-ion pumps with a liquid nitrogen cooled

baffle at the interface with the accelerator vacuum (~ 10-6 torr)

to keep contamination to an absolute minimum. We have never seen

a hydrogen buildup on any sample. Such buildup commonly occurs

in poor vacuum as a result of beam-induced polymerization of resi-

dual hydrocarbon gases from the vacuum system.

2) We have observed no indication that exposure of lunar samples to

atmospheric humidity affects the hydrogen contents of the samples

o

below - 500 A. Nevertheless, many of the samples used in this study

have been carefully protected from atmospheric exposure by storing

and handling them entirely in dry nitrogen gas following their return

from the lunar surface in a vacuum-sealed sample container.

3) No attempt has been made to neutralize the charging of the sample

19 4+
due to bombardment of targets by the proton or F ion beams,

other than to continuously collect the charge from the aluminum target

holder. Surface potentials of 2-14 kV have been observed on these

samples during illumination with the proton beam. A correction to

the depth scale for the surface potential can be applied by measur-

ing the apparent shift in the proton beam energy corresponding to

27 28
an Al(p,7) Si resonance at 0.992 MeV proton energy (acting on

the relatively uniform aluminum content of the lunar sample). While
o

surface potentials of this magnitude are significant (5 2000 A) for

the fluorine distribution data, potentials of a few tens of kilovolts

have no significant effect on the hydrogen depth distribution mea-

surements (Leich et al. 1973b).
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4) We have never observed any indication that the hydrogen and fluorine

implanted in the course of our analyses contribute to the measured

concentrations. This observation is in agreement with the expected

result based on the deep penetration of the energetic beam ions

(~ 10 p.m).

III. Hydrogen Depth Distributions

We have previously reported results of hydrogen profile measurements

on a number of Apollo 11, Apollo 15, and Apollo 16 samples (Leich et al.

1973a and 1973b), noting that the hydrogen profiles measured on these samples

fell into two distinct classes. One of these classes is characterized by a

surface concentration of hydrogen, not more than a few hundred angstroms thick

(e.g., the glass sphere profile in Fig. 1). The location of this hydrogen

concentration appears to be reasonably consistent with expected solar wind

proton penetration depths. However, small amounts of surface adsorbed hydro-

gen (~ 2 X 1015 atoms/cm2, equivalent to one monolayer of H20) are routinely

observed on interior rock samples which have been exposed only to dry nitro-

gen gas. The source of this adsorbed hydrogen is undoubtedly terrestrial

(most likely the small residual H20 content of the "dry" nitrogen), leading

to the obvious conclusion that the similar features observed on the lunar

exterior surfaces of the same samples, including sealed rock box samples,

are due primarily to terrestrial contamination.

Figure 2 shows the results of a simulation experiment performed to

determine the effects of extreme radiation damage on the adsorption and

penetration of H20 contamination. Fused silica targets were irradiated with

86 keV 160+ ions at doses up to 1.4 X 1017 ions/cm2 in order to produce heavy
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radiation damage down to depths of ~ 3000 A. Subsequent exposure of some

of these targets to water, in either liquid or vapor form, resulted in

adsorption of measurable amounts of hydrogen surface contamination. Observed

surface (within hundreds of angstroms) hydrogen concentrations were consis-

tently a factor of two to three higher on the radiation damaged surfaces

than on undamaged surfaces. However, the hydrogen concentrations exhibited

only a slight dependence on the total dose between 2 X 1016 and 1.4 x 1017

ions/cm2 . Most importantly, it is evident from Fig. 2 that very little

0

hydrogen contamination has penetrated to depths of 1000 A or greater, in

spite of the fact that radiation damage should be at saturation levels in

0
the region from the surface to ~ 3000 A deep (Winterbon et al. 1970). The

similarity of the hydrogen profiles obtained on H20 contaminated radiation

damaged quartz glass samples with many of the lunar sample hydrogen profiles

argues strongly for a similar origin of the observed hydrogen, namely ter-

restrial H20 contamination preferentially bound on radiation damaged surfaces.

In addition to the surface adsorbed hydrogen, a small hydrogen content
o o

with a uniform distribution between - 1000 A and 4000 A deep (the limit of

our measurements) has been observed in most of the interior rock samples,

suggesting that this hydrogen component (normally between 20 and 50 ppm) is

probably representative of a small volume content of lunar hydrogen in these

rocks. An alternative explanation is that the deep hydrogen corresponds to

H adsorbed on reentrant surfaces or along microfractures.

A second type of profile is characterized by an additional component
0

with a maximum hydrogen content near 1000 A deep and concentrated mainly
o

within ~ 2000 A of the surface (the full width at half maximum ranges from
o o

1800 to 2700 A with a mean of 2200 A) and extending to depths greater than
0

4000 A. Figures 1 and 3 show two examples of this type of distribution.
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While extensive penetration of a terrestrial contaminant cannot be completely

ruled out as possible origin for this hydrogen component, we believe we are

measuring solar hydrogen because: (1) Exposure of artificially radiation-

damaged fused silica surfaces to H20, even in liquid form, produced no pene-

o
tration of H20 to depths greater than 1000 A, even for surfaces which were

heavily damaged with 160 ions prior to H20 exposure (Fig. 2). (2) It appears

doubtful that the exterior surfaces of 68815 and 70019, which had never been

exposed to the atmosphere, could have adsorbed such large quantities of H20

while the exterior surfaces of other samples, such as 68124,3 (the glass

sphere, Fig. i), returned in the same sealed rock box as 68815, showed only small

quantities of surface adsorbed hydrogen. Given the known tendency of glasses

to hydrate, the 68124,3 glass sphere would have been expected to adsorb much

more H20 than the surface of a crystalline rock sample such as 68815. (3)

The large amounts of hydrogen observed in these samples are much greater

than those seen in the damaged, H20-exposed glasses.

Our measurements of Apollo 17 samples, which consist of surface chips

from two very different rocks, show similar hydrogen depth profiles. Sample

70019,17, shown in Fig. 3, is a glass-coated soil breccia which has a maximum

0

hydrogen content near 1000 A deep, closely paralleling 68815,27. Samples

75075,2 and 75075,18 are from opposite sides of a heavily patinated basalt;

both were exposed to the solar wind. Although 75075 is very different physi-

cally from other samples we have measured, the hydrogen depth profiles are

similar to 68815 and 70019 (see Fig. 4). Both 75075 and 70019 are sealed

rock box samples and thus have not been exposed to atmospheric H20 contamina-

tion. The hydrogen content of the deeper regions (100-200 ppm) is typical

of lunar soil samples and this would be consistent with a model of patina

formation by welded deposition of nearby soil (as opposed to splattering of
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a coating from the host rock itself - see Blanford et al. 1974). However, the

similarity of the overall profile to that found on unpatinated rock surfaces

is suggestive of a patina formed from material which had not been exposed

to solar wind prior to deposition. In either case the similarity of the 75075

profiles to those observed on unpatinated rocks or glass samples is best

interpreted as indicating that the patina on these two surfaces has been

deposited in layers at least 0.4 tm thick. Alternatively, it is more diffi-

cult to rule out H20 contamination as an origin for the 75075 hydrogen because
o

our argument that contamination H20 does not penetrate to depths 1000 A

may not be valid for the porous patina surface. However, the low hydrogen

concentrations observed for the interior, soil breccia surface of 70019,

which is similar material, argues against the 75075 profiles being contami-

nation.

We now wish to consider in more detail the origin of the solar hydrogen

0 o

at depths between 500 A and 4000 A in rocks such as 68815 and 70019. Although

implantation of solar wind protons is the most likely original source, the

observed hydrogen profiles are significantly more penetrating than would be

derived from the direct implantation of solar wind protons, in agreement

with conclusions based on chemical etching experiments for implanted rare

gases (Eberhardt et al. 1970, Kirsten et al. 1970, Hintenberger et al. 1970).

If solar wind is the source of this hydrogen component, extensive modifica-

tion by diffusion and trapping of hydrogen atoms is implied. If diffusion

rates for hydrogen in terrestrial silicates (Bruckner 1971) are applicable

to the lunar samples, it appears that bulk volume diffusion would be too

rapid to result in the observed profiles without some sort of trapping to

slow down the diffusion process (Ducati et al. 1973). A hypothesis in which

implanted solar wind hydrogen diffuses rapidly into (and out of) the samples
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with a small remnant of the implanted dose being retained in radiation damage

traps seems plausible. The radiation damage is evidently so heavy in the

0

outer 500 A that no isolated traps remain (Borg et al. 1971). Beneath this

depth relatively intense radiation damage (but below saturation) may persist

o
to a depth of . 2000 A, corresponding closely with the range of He

ions with velocities near those of frequent high velocity (up to 800 km/sec)

solar wind streams observed by satellites (Wolfe 1972). The population of

isolated radiation damage traps by diffusing solar wind atoms may then result

in a hydrogen depth profile which reflects the distribution of radiation

o

damage. A discontinuity in the radiation damage gradient near 2000 A deep

may account for the characteristic bend observed in the measured hydrogen

o

profiles, with the tail of the hydrogen distribution (below 2000 A deep)

representing diffusion of hydrogen out of the region of high hydrogen con-

centration into a region in which the radiation damage (due to solar flare

and suprathermal ions) is much less intense. The slope of the hydrogen pro-
o o

file in the 2000 A to 4000 A depth region may reflect population of traps

in a radiation damage gradient, or it may represent a dynamic profile of

inward diffusion with weak trapping.

An alternative explanation for the observed hydrogen profiles is the

direct implantation of "suprathermal" (10-100 keV) protons. If this hypo-

thesis is correct, the measured hydrogen profiles provide information about

the energy spectrum of the incident protons. A reasonably good fit to the

initial set of hydrogen profile data for 68815,27 is shown by the solid

curve in Fig. 5. This curve was obtained from range-energy relations

(Lindhard et al. 1963) using the energy spectrum shown in Fig. 6, assuming

that no post-implantation diffusion occurs and taking into account the

effects of erosion and of incidence from a solar direction. A two component
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energy spectrum is necessary to produce the characteristic bend in the pro-

o o
file near ~ 2000 A deep. An atomic erosion rate of 0.5 A/year and an ero-

sional equilibrium profile has been assumed (Wehner et al. 1963), implying

13 -2 -1
a long-term flux of suprathermal protons of - 10 cm y , within a factor

of about 3 of the flux for an event yielding the data shown in Fig. 6 taken

from satellite observations (Frank 1970). Since the long-term flux of pro-

tons in this energy range is likely to be a few orders of magnitude lower

than the flux during such an event, it appears unlikely that the average

flux has been high enough to account for the measured hydrogen profiles by

direct implantation. However, little data has been obtained in this energy

range, and it is possible that long-term fluxes may have been high enough

to account for a significant portion of the hydrogen distributions, or at
o

least to account for a significant radiation damage gradient in the 2000 A

o
to 4000 A depth region.

However, if the suprathermal hypothesis is adopted, it is still neces-

sary to invoke radiation damage hindrance to explain why the direct implanta-

tion profile has not been modified by diffusion. The profile may or may not

be controlled by the radiation damage gradient, depending on the strength of

the trapping, and postulating a suprathermal flux may be unnecessary. In

any case, the important point is that radiation damage is the dominant mechan-

ism for localizing hydrogen near the surfaces of lunar samples.

IV. Fluorine Depth Distribution

Previously, we have reported fluorine surface concentrations (up to

1000 ppm) on several Apollo 16 samples which were much larger than those of

bulk analyses of rocks (< 50 ppm) or soils .(50-100 ppm) as reported by
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Jovanovic and Reed (1973). However, the high (- 2500 ppm) surface fluorine

concentration measured by the in-situ Surveyor VII analysis (Patterson et al.

1970) agree with our data - if taken at face value. The critical question,

which we were unable to answer previously, was the level of fluorine contami-

nation. This is of particular concern because fluorine-rich materials

(Teflon, Freon, etc.) have been used extensively both in the mission and

post-mission handling of lunar samples. Our recent work has indicated that

fluorine contamination is present - making the study of lunar surface fluo-

rine difficult.

There are two features of our data which are not easily explained by

contamination: (1) High fluorine concentrations are observed even at depths

of 1 tm; this is illustrated in Fig. 7 (bottom)-for the cases of 66044,8 and

75075,2. The former is a 5 mm crystalline anorthosite fragment which has

the highest surface-averaged fluorine concentration we have measured. Our

measurements of 75075,2 are on a heavily patinated surface which shows a

fluorine content similar to that of 66044,8. On 66044,8, the fluorine con-

centrations are high on two surfaces, and, along with 75075,2, are uniform

at depths from 0.2to at least 1 am. Table 1 indicates the range of fluorine

contents in the depth intervals 0-0.5 4m and 0.5-1.0 am for some of the

samples we have studied. While these high levels persist to 1 r m, our

experience in hydrogen depth studies has shown the hydrogen contamination

is usually manifested as a surface film which is less than ~ 0. 1 4m thick.

(2) Fluorine concentrations are usually much higher on the lunar exterior

surface of rock chips than on the interior surface. The samples studied to

date were allocated primarily for the purpose of hydrogen studies; in order

to provide a dry N2 atmosphere and to protect against surface abrasion

during shipping, the samples were sealed in Teflon bags, excepting our
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Apollo 17 samples, which were wrapped in aluminum foil prior to bagging.

The interior surfaces produced by chipping in Houston provide a control on

fluorine contamination from the packaging process. However, all rocks returned

on Apollo 15-17 were contained in fluorocarbon bags cleaned in Freon, which could

provide additional fluorine contamination on lunar exterior surfaces.

In order to measure the contamination due to Teflon packaging, we cleaned

and baked quartz glass discs and found, after this procedure, a fluorine level

of < 20 ppm. Two of these discs were transported to the curatorial facility

where they were heat sealed in Teflon bags in the same way as lunar samples.

Subsequent measurements showed a surface fluorine peak (- 200 ppm) which at

a depth of 1 Lm had not yet reached zero (< 20 ppm) concentration (Fig. 8).

The discs which remained in our laboratory as controls had < 20 ppm, as

before. Figure 8 shows that readily measurable amounts of fluorine were

produced either by the heat sealing or by abrasion; however, the amounts

are much lower (by a factor of 5-10) than on lunar exterior surfaces. Con-

ceivably, the rough surface of a rock is much more susceptible to contamination

than the discs. However, the lunar interior samples packaged in Teflon tend to

show concentrations no higher than those found on the discs. It is also

clear from Fig. 8 that contamination is present to depths as great as 1 Lm,

implying that the high fluorine at this depth in lunar samples (see point

[1]) could also be contamination.

If the surface fluorine contents represent contamination from the mission

packaging materials, it is somewhat surprising that the most contaminated

sample should be a coarse-fine fragment, because 66044,8 was transported to

earth as part of a soil sample and, statistically, should have been protected.

To check that 66044,8 was not an anomolously fluorine-rich lunar rock it was

cleaved in half in our laboratory and fluorine measured on the interior surface.
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As shown in Fig. 7 (bottom), the average fluorine content at 0.5-1.0 tm is

: 40 ppm, consistent with bulk fluorine measurements (Jovanovic and Reed

1973).

Although the consistently higher fluorine on exterior relative to interior

surfaces suggests a lunar origin for the surface fluorine, we have some experi-

mental evidence that the original arguments against contamination may not be

valid. It may be that no lunar sample is sufficiently uncontaminated for the

purposes of our experiment and perhaps other surface property experiments

(e.g., carbon) as well. The only possibility would be samples from surface

indentations, e.g., vesicles, which have been protected from abrasion, and

some SESC or core samples that have never been exposed to teflon. Assuming

that all fluorine we have observed is due to teflon, the associated carbon

contamination would be insignificant in most bulk carbon chemistry studies.

We have so far limited the discussion to the measurement of surface

fluorine layers because of their possible connection with condensation or

reaction processes. It is clear that the interpretation of these results

is clouded by the possibility of Teflon contamination; however, the use of

our technique to determine bulk fluorine content is not open to question

(see Fig. 7, bottom and Fig. 8). For example, an interior surface of 70019

that was freshly exposed in our laboratory has not been contaminated. This

is confirmed by the flat fluorine depth distribution and the absence of a

large surface peak - see the top part of Fig. 7. The concentration observed

(- 200 ppm) is approximately a factor of two higher than that found in most

Apollo 16 samples (Jovanovic and Reed 1973); thus, we conclude that the soil

breccia part of 70019 is a fluorine-rich lunar sample.
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V. Summary

A significant portion of the hydrogen contents of lunar samples appears

to reside within a few thousand angstroms of the sample surfaces. Besides

surface contamination, in quantities corresponding to a monolayer (~ 2 x 1015

H atoms/cm2) or so of H20, and perhaps a small (normally 20-50 ppm) volume

content of lunar hydrogen, an additional component has been observed in

several of the lunar samples analyzed in this and previous studies. Although

apparently of solar origin, the distribution of this component over charac-

o
teristic depths of 1000-3000 A shows that a simple picture of direct solar

wind implantation is not adequate. Instead, the observed hydrogen depth

distributions appear to result from some combination of a redistribution of

solar wind hydrogen by diffusion and trapping in radiation damage sites and

the direct implantation of "suprathermal" (10-100 keV) protons.

Although we are convinced that solar hydrogen has been measured in at

least four of our samples [10085,31-12 (Leich et al. 1973a), 68815, 75075,

and 70019], we do not understand why only these four show high concentrations.

The 10085 and 70019 samples are glasses but 8 other glass samples analyzed

(both coarse fines and rock surface chips) show low concentrations (Leich

1973). The 75075 (a patinated rock surface) sample is unique. However, 5

other rock samples which should be comparable to 68815 show only small

concentrations (Leich 1973). This variability is puzzling and suggests

that the nature of the "trapping" mechanism we postulate may be quite complex

in detail.

In contrast to hydrogen, the fluorine contents of lunar sample surfaces

are not likely to be strongly influenced by solar particle implantation. On

the other hand, if volcanic emanations are present on the lunar surface, they
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may, by analogy with terrestrial volcanic emanations, contain significant

quantities of fluorine and other halogens. Thus, detection of surface enrich-

ments of fluorine in lunar samples could indicate the presence of such emana-

tions from the lunar interior. While consistently higher fluorine concentrations

have been found on the lunar exterior surfaces than on the interior surfaces of

the samples analyzed in this study, it is now certain that significant fluorine

contamination has been introduced in the course of sample return and process-

ing, and the possibility that the exterior surfaces were merely more thoroughly

contaminated than the interior surfaces cannot, at this time, be ruled out.

Hence, although tempted' we are unable to defend a lunar origin of observed

surface enrichments of fluorine with presently measured samples.
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Table 1. Fluorine concentration data in lunar samples. The two regions listed are

surface 0-0.5 pm deep, and 0.5-1.0 m deep. The positions for surface peaks listed

are uncorrected for surface potentials created due to target charging.

Sample Surface-averaged F content (ppm) Surface Peak

0-0.5 pm 0.5-1.0 pm position (pm) FWHM (pm)

65315,6 1000 480 0.10 0.17

65315,6 interior 100 50 0.12 0.30

68124,3-A 410 50 0.13 0.13

68124,3-B 850 120 0.12 0.13

66044,8-A 820 540 0.10 0.04

66044,8-B 1900 1400 0.03 0.08

66044,8 interior 75 40 0.02 0.15

70019,17 235 60 0.12 0.17

t70019, 17 interior 180 130 0.06 -

75075,2 975 550 .0.00 0.16

t 7 50 75 , 18  330 150 0.00 0.10

Sealed rock box sample

t Sealed rock box sample; not Teflon bagged.
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Figure Captions

Figure 1. Hydrogen concentration versus depth for three samples: breccia

chip 68815,27, surface glass 65315,6, and glass spherule 68124,3.

Smooth curves shown for the surface glass and glass sphere

samples are drawn through the data points. 68815,27 and 68124,3

are sealed rock box samples.

Figure 2. Fused silica simulation experiment results. Data shown are

representative of a set of samples subjected first to radiation

damage and H20 exposure tests. Two of the samples were damaged

by irradiating them with 86-keV 160 ions for 4 hours to a total

dose of 1.4 x 1017 ions/cm2 . One of these (solid circles) was

subsequently exposed to H20 in both liquid (submerged in distilled

water for 24 hr) and vapor (laboratory atmosphere for one week)

form, while the other (solid triangles) was exposed only to dry

N2 gas for 2 hr. A third sample (open circles) was not radiation

damaged but was given the same H20 exposure as the first sample.

Only sample error bars are shown on the data points obtained

during the subsequent H analysis, performed to determine the

extent of H20 penetration. The solid curve represents typical

results for a clean fused silica sample with a normal (for this

batch) H content of - 20 ppm.

Figure 3. Hydrogen concentration versus depth for 70019,17, a glass coated

soil breccia chip (sealed rock box sample). The exterior surface

was glass; the interior surface, soil breccia. During bombardment

the H is relatively mobile, as indicated by the difference in the

first and second run.
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Figure 4. Hydrogen concentration versus depth for two 75075 samples (from

sealed rock box) 75075,2 and 75075,18, both patinated surface

chips. The curve for 75075,2 is drawn through the data points.

Figure 5. Implantation of solar protons in lunar samples. The data points

are from sample 68815,27 (Fig. 1). The solid curve is the

distribution resulting from the flux spectrum indicated by the

solid lines in Figure 6, assuming an atomic erosion rate of

0.5 A/yr, and calculated from the expected flux, incidence angle,

irradiation time, and projected range of suprathermal protons

(Leich 1973). The spectrum was chosen to give a rough fit to

the data, using a proton range-energy relation derived from

Lindhard et al. (1963) and neglecting range straggling and

diffusion. The dashed curve indicates the limit of penetration

of the present-day solar wind, including the effects of range

straggling. With no diffusive losses in 4 x 106 yr, the peak

hydrogen content at the surface would be greater than 1023 H

atoms/cm3 , more than two orders of magnitude higher than the

observed hydrogen content near the surface of sample 68815,27.

Figure 6. "Suprathermal" proton flux spectrum do/dE versus proton energy E.

Data points with associated error bars are taken from satellite

observations reported by Frank (1970). A spectrum adjusted to

give a rough fit to the observed hydrogen distribution in 68815,27,

assuming an atomic erosion rate of 0.5 A/yr, is indicated by the

solid lines.
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Figure 7. Top: Fluorine concentration versus depth for sample 70019,17

(sealed rock box sample). Exterior points are from measurements

on the glass coating, interior points are from measurements of

a freshly exposed soil breccia surface.

Bottom: Fluorine concentration versus depth for anorthosite

coarse fine 66044,8, and patinated breccia 75075,2, both sealed

rock box samples. Shown are data from two surfaces of 66044,8,

and from an interior surface freshly exposed in our laboratory.

The smoothed dashed curve is drawn through the data points of

75075,2.

Figure 8. Fluorine concentration versus depth for quartz glass discs: solid

points correspond to one that was packaged in Teflon in the cura-

torial facility; open points to an identical disc that served as

a control.
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